Рассчитать высоту треугольника со сторонами 120, 86 и 76

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 86 + 76}{2}} \normalsize = 141}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141(141-120)(141-86)(141-76)}}{86}\normalsize = 75.6639084}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141(141-120)(141-86)(141-76)}}{120}\normalsize = 54.2258011}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141(141-120)(141-86)(141-76)}}{76}\normalsize = 85.6196859}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 86 и 76 равна 75.6639084
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 86 и 76 равна 54.2258011
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 86 и 76 равна 85.6196859
Ссылка на результат
?n1=120&n2=86&n3=76