Рассчитать высоту треугольника со сторонами 120, 87 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 87 + 57}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-120)(132-87)(132-57)}}{87}\normalsize = 53.1526865}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-120)(132-87)(132-57)}}{120}\normalsize = 38.5356977}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-120)(132-87)(132-57)}}{57}\normalsize = 81.1277847}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 87 и 57 равна 53.1526865
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 87 и 57 равна 38.5356977
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 87 и 57 равна 81.1277847
Ссылка на результат
?n1=120&n2=87&n3=57
Найти высоту треугольника со сторонами 131, 129 и 15
Найти высоту треугольника со сторонами 90, 89 и 47
Найти высоту треугольника со сторонами 120, 87 и 51
Найти высоту треугольника со сторонами 113, 93 и 86
Найти высоту треугольника со сторонами 33, 22 и 16
Найти высоту треугольника со сторонами 137, 116 и 35
Найти высоту треугольника со сторонами 90, 89 и 47
Найти высоту треугольника со сторонами 120, 87 и 51
Найти высоту треугольника со сторонами 113, 93 и 86
Найти высоту треугольника со сторонами 33, 22 и 16
Найти высоту треугольника со сторонами 137, 116 и 35