Рассчитать высоту треугольника со сторонами 120, 88 и 51
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 88 + 51}{2}} \normalsize = 129.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129.5(129.5-120)(129.5-88)(129.5-51)}}{88}\normalsize = 45.4991085}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129.5(129.5-120)(129.5-88)(129.5-51)}}{120}\normalsize = 33.3660129}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129.5(129.5-120)(129.5-88)(129.5-51)}}{51}\normalsize = 78.5082656}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 88 и 51 равна 45.4991085
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 88 и 51 равна 33.3660129
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 88 и 51 равна 78.5082656
Ссылка на результат
?n1=120&n2=88&n3=51
Найти высоту треугольника со сторонами 95, 84 и 16
Найти высоту треугольника со сторонами 104, 102 и 51
Найти высоту треугольника со сторонами 118, 74 и 67
Найти высоту треугольника со сторонами 139, 118 и 29
Найти высоту треугольника со сторонами 112, 77 и 36
Найти высоту треугольника со сторонами 133, 125 и 123
Найти высоту треугольника со сторонами 104, 102 и 51
Найти высоту треугольника со сторонами 118, 74 и 67
Найти высоту треугольника со сторонами 139, 118 и 29
Найти высоту треугольника со сторонами 112, 77 и 36
Найти высоту треугольника со сторонами 133, 125 и 123