Рассчитать высоту треугольника со сторонами 120, 92 и 58
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 92 + 58}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-120)(135-92)(135-58)}}{92}\normalsize = 56.2903919}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-120)(135-92)(135-58)}}{120}\normalsize = 43.1559671}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-120)(135-92)(135-58)}}{58}\normalsize = 89.2882079}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 92 и 58 равна 56.2903919
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 92 и 58 равна 43.1559671
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 92 и 58 равна 89.2882079
Ссылка на результат
?n1=120&n2=92&n3=58
Найти высоту треугольника со сторонами 141, 123 и 97
Найти высоту треугольника со сторонами 135, 128 и 117
Найти высоту треугольника со сторонами 144, 84 и 77
Найти высоту треугольника со сторонами 111, 109 и 96
Найти высоту треугольника со сторонами 121, 109 и 40
Найти высоту треугольника со сторонами 142, 101 и 59
Найти высоту треугольника со сторонами 135, 128 и 117
Найти высоту треугольника со сторонами 144, 84 и 77
Найти высоту треугольника со сторонами 111, 109 и 96
Найти высоту треугольника со сторонами 121, 109 и 40
Найти высоту треугольника со сторонами 142, 101 и 59