Рассчитать высоту треугольника со сторонами 120, 98 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 98 + 34}{2}} \normalsize = 126}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{126(126-120)(126-98)(126-34)}}{98}\normalsize = 28.4798532}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{126(126-120)(126-98)(126-34)}}{120}\normalsize = 23.2585468}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{126(126-120)(126-98)(126-34)}}{34}\normalsize = 82.0889888}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 98 и 34 равна 28.4798532
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 98 и 34 равна 23.2585468
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 98 и 34 равна 82.0889888
Ссылка на результат
?n1=120&n2=98&n3=34
Найти высоту треугольника со сторонами 134, 97 и 65
Найти высоту треугольника со сторонами 104, 94 и 89
Найти высоту треугольника со сторонами 119, 105 и 30
Найти высоту треугольника со сторонами 130, 105 и 98
Найти высоту треугольника со сторонами 140, 114 и 97
Найти высоту треугольника со сторонами 31, 30 и 28
Найти высоту треугольника со сторонами 104, 94 и 89
Найти высоту треугольника со сторонами 119, 105 и 30
Найти высоту треугольника со сторонами 130, 105 и 98
Найти высоту треугольника со сторонами 140, 114 и 97
Найти высоту треугольника со сторонами 31, 30 и 28