Рассчитать высоту треугольника со сторонами 120, 98 и 40
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{120 + 98 + 40}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-120)(129-98)(129-40)}}{98}\normalsize = 36.5254756}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-120)(129-98)(129-40)}}{120}\normalsize = 29.8291384}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-120)(129-98)(129-40)}}{40}\normalsize = 89.4874153}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 120, 98 и 40 равна 36.5254756
Высота треугольника опущенная с вершины A на сторону BC со сторонами 120, 98 и 40 равна 29.8291384
Высота треугольника опущенная с вершины C на сторону AB со сторонами 120, 98 и 40 равна 89.4874153
Ссылка на результат
?n1=120&n2=98&n3=40
Найти высоту треугольника со сторонами 90, 53 и 40
Найти высоту треугольника со сторонами 87, 70 и 33
Найти высоту треугольника со сторонами 114, 107 и 22
Найти высоту треугольника со сторонами 65, 60 и 16
Найти высоту треугольника со сторонами 148, 131 и 130
Найти высоту треугольника со сторонами 123, 118 и 55
Найти высоту треугольника со сторонами 87, 70 и 33
Найти высоту треугольника со сторонами 114, 107 и 22
Найти высоту треугольника со сторонами 65, 60 и 16
Найти высоту треугольника со сторонами 148, 131 и 130
Найти высоту треугольника со сторонами 123, 118 и 55