Рассчитать высоту треугольника со сторонами 121, 101 и 100
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 101 + 100}{2}} \normalsize = 161}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{161(161-121)(161-101)(161-100)}}{101}\normalsize = 96.1373393}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{161(161-121)(161-101)(161-100)}}{121}\normalsize = 80.24687}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{161(161-121)(161-101)(161-100)}}{100}\normalsize = 97.0987127}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 101 и 100 равна 96.1373393
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 101 и 100 равна 80.24687
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 101 и 100 равна 97.0987127
Ссылка на результат
?n1=121&n2=101&n3=100
Найти высоту треугольника со сторонами 150, 115 и 46
Найти высоту треугольника со сторонами 137, 123 и 66
Найти высоту треугольника со сторонами 83, 79 и 15
Найти высоту треугольника со сторонами 136, 102 и 80
Найти высоту треугольника со сторонами 87, 79 и 66
Найти высоту треугольника со сторонами 115, 94 и 47
Найти высоту треугольника со сторонами 137, 123 и 66
Найти высоту треугольника со сторонами 83, 79 и 15
Найти высоту треугольника со сторонами 136, 102 и 80
Найти высоту треугольника со сторонами 87, 79 и 66
Найти высоту треугольника со сторонами 115, 94 и 47