Рассчитать высоту треугольника со сторонами 121, 102 и 75
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 102 + 75}{2}} \normalsize = 149}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149(149-121)(149-102)(149-75)}}{102}\normalsize = 74.6907401}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149(149-121)(149-102)(149-75)}}{121}\normalsize = 62.962442}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149(149-121)(149-102)(149-75)}}{75}\normalsize = 101.579406}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 102 и 75 равна 74.6907401
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 102 и 75 равна 62.962442
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 102 и 75 равна 101.579406
Ссылка на результат
?n1=121&n2=102&n3=75
Найти высоту треугольника со сторонами 119, 114 и 109
Найти высоту треугольника со сторонами 124, 120 и 9
Найти высоту треугольника со сторонами 87, 85 и 55
Найти высоту треугольника со сторонами 130, 110 и 92
Найти высоту треугольника со сторонами 67, 55 и 38
Найти высоту треугольника со сторонами 129, 96 и 53
Найти высоту треугольника со сторонами 124, 120 и 9
Найти высоту треугольника со сторонами 87, 85 и 55
Найти высоту треугольника со сторонами 130, 110 и 92
Найти высоту треугольника со сторонами 67, 55 и 38
Найти высоту треугольника со сторонами 129, 96 и 53