Рассчитать высоту треугольника со сторонами 121, 102 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 102 + 80}{2}} \normalsize = 151.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{151.5(151.5-121)(151.5-102)(151.5-80)}}{102}\normalsize = 79.2942472}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{151.5(151.5-121)(151.5-102)(151.5-80)}}{121}\normalsize = 66.8430844}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{151.5(151.5-121)(151.5-102)(151.5-80)}}{80}\normalsize = 101.100165}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 102 и 80 равна 79.2942472
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 102 и 80 равна 66.8430844
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 102 и 80 равна 101.100165
Ссылка на результат
?n1=121&n2=102&n3=80
Найти высоту треугольника со сторонами 128, 102 и 29
Найти высоту треугольника со сторонами 150, 118 и 103
Найти высоту треугольника со сторонами 150, 93 и 68
Найти высоту треугольника со сторонами 116, 106 и 69
Найти высоту треугольника со сторонами 89, 67 и 45
Найти высоту треугольника со сторонами 146, 89 и 86
Найти высоту треугольника со сторонами 150, 118 и 103
Найти высоту треугольника со сторонами 150, 93 и 68
Найти высоту треугольника со сторонами 116, 106 и 69
Найти высоту треугольника со сторонами 89, 67 и 45
Найти высоту треугольника со сторонами 146, 89 и 86