Рассчитать высоту треугольника со сторонами 121, 104 и 45
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 104 + 45}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-121)(135-104)(135-45)}}{104}\normalsize = 44.1600605}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-121)(135-104)(135-45)}}{121}\normalsize = 37.9557545}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-121)(135-104)(135-45)}}{45}\normalsize = 102.058807}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 104 и 45 равна 44.1600605
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 104 и 45 равна 37.9557545
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 104 и 45 равна 102.058807
Ссылка на результат
?n1=121&n2=104&n3=45
Найти высоту треугольника со сторонами 70, 68 и 57
Найти высоту треугольника со сторонами 126, 101 и 59
Найти высоту треугольника со сторонами 38, 29 и 24
Найти высоту треугольника со сторонами 89, 75 и 59
Найти высоту треугольника со сторонами 140, 130 и 42
Найти высоту треугольника со сторонами 103, 99 и 68
Найти высоту треугольника со сторонами 126, 101 и 59
Найти высоту треугольника со сторонами 38, 29 и 24
Найти высоту треугольника со сторонами 89, 75 и 59
Найти высоту треугольника со сторонами 140, 130 и 42
Найти высоту треугольника со сторонами 103, 99 и 68