Рассчитать высоту треугольника со сторонами 121, 105 и 100
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 105 + 100}{2}} \normalsize = 163}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{163(163-121)(163-105)(163-100)}}{105}\normalsize = 95.2672032}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{163(163-121)(163-105)(163-100)}}{121}\normalsize = 82.669887}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{163(163-121)(163-105)(163-100)}}{100}\normalsize = 100.030563}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 105 и 100 равна 95.2672032
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 105 и 100 равна 82.669887
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 105 и 100 равна 100.030563
Ссылка на результат
?n1=121&n2=105&n3=100
Найти высоту треугольника со сторонами 149, 131 и 33
Найти высоту треугольника со сторонами 133, 133 и 4
Найти высоту треугольника со сторонами 104, 91 и 72
Найти высоту треугольника со сторонами 52, 50 и 38
Найти высоту треугольника со сторонами 103, 82 и 39
Найти высоту треугольника со сторонами 129, 101 и 83
Найти высоту треугольника со сторонами 133, 133 и 4
Найти высоту треугольника со сторонами 104, 91 и 72
Найти высоту треугольника со сторонами 52, 50 и 38
Найти высоту треугольника со сторонами 103, 82 и 39
Найти высоту треугольника со сторонами 129, 101 и 83