Рассчитать высоту треугольника со сторонами 121, 106 и 21
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 106 + 21}{2}} \normalsize = 124}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124(124-121)(124-106)(124-21)}}{106}\normalsize = 15.6693314}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124(124-121)(124-106)(124-21)}}{121}\normalsize = 13.7268523}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124(124-121)(124-106)(124-21)}}{21}\normalsize = 79.0928155}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 106 и 21 равна 15.6693314
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 106 и 21 равна 13.7268523
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 106 и 21 равна 79.0928155
Ссылка на результат
?n1=121&n2=106&n3=21
Найти высоту треугольника со сторонами 61, 40 и 28
Найти высоту треугольника со сторонами 134, 75 и 67
Найти высоту треугольника со сторонами 137, 132 и 61
Найти высоту треугольника со сторонами 121, 116 и 111
Найти высоту треугольника со сторонами 80, 60 и 48
Найти высоту треугольника со сторонами 147, 114 и 114
Найти высоту треугольника со сторонами 134, 75 и 67
Найти высоту треугольника со сторонами 137, 132 и 61
Найти высоту треугольника со сторонами 121, 116 и 111
Найти высоту треугольника со сторонами 80, 60 и 48
Найти высоту треугольника со сторонами 147, 114 и 114