Рассчитать высоту треугольника со сторонами 121, 106 и 38

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 106 + 38}{2}} \normalsize = 132.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132.5(132.5-121)(132.5-106)(132.5-38)}}{106}\normalsize = 36.8569871}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132.5(132.5-121)(132.5-106)(132.5-38)}}{121}\normalsize = 32.2879391}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132.5(132.5-121)(132.5-106)(132.5-38)}}{38}\normalsize = 102.811596}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 106 и 38 равна 36.8569871
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 106 и 38 равна 32.2879391
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 106 и 38 равна 102.811596
Ссылка на результат
?n1=121&n2=106&n3=38