Рассчитать высоту треугольника со сторонами 121, 106 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 106 + 59}{2}} \normalsize = 143}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{143(143-121)(143-106)(143-59)}}{106}\normalsize = 58.9989109}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{143(143-121)(143-106)(143-59)}}{121}\normalsize = 51.6849963}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{143(143-121)(143-106)(143-59)}}{59}\normalsize = 105.998043}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 106 и 59 равна 58.9989109
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 106 и 59 равна 51.6849963
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 106 и 59 равна 105.998043
Ссылка на результат
?n1=121&n2=106&n3=59
Найти высоту треугольника со сторонами 129, 105 и 51
Найти высоту треугольника со сторонами 132, 93 и 68
Найти высоту треугольника со сторонами 123, 112 и 49
Найти высоту треугольника со сторонами 116, 96 и 90
Найти высоту треугольника со сторонами 119, 102 и 57
Найти высоту треугольника со сторонами 77, 69 и 9
Найти высоту треугольника со сторонами 132, 93 и 68
Найти высоту треугольника со сторонами 123, 112 и 49
Найти высоту треугольника со сторонами 116, 96 и 90
Найти высоту треугольника со сторонами 119, 102 и 57
Найти высоту треугольника со сторонами 77, 69 и 9