Рассчитать высоту треугольника со сторонами 121, 108 и 54

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 108 + 54}{2}} \normalsize = 141.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{141.5(141.5-121)(141.5-108)(141.5-54)}}{108}\normalsize = 53.9992615}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{141.5(141.5-121)(141.5-108)(141.5-54)}}{121}\normalsize = 48.197688}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{141.5(141.5-121)(141.5-108)(141.5-54)}}{54}\normalsize = 107.998523}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 108 и 54 равна 53.9992615
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 108 и 54 равна 48.197688
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 108 и 54 равна 107.998523
Ссылка на результат
?n1=121&n2=108&n3=54