Рассчитать высоту треугольника со сторонами 121, 110 и 13
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 110 + 13}{2}} \normalsize = 122}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122(122-121)(122-110)(122-13)}}{110}\normalsize = 7.26308452}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122(122-121)(122-110)(122-13)}}{121}\normalsize = 6.60280411}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122(122-121)(122-110)(122-13)}}{13}\normalsize = 61.456869}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 110 и 13 равна 7.26308452
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 110 и 13 равна 6.60280411
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 110 и 13 равна 61.456869
Ссылка на результат
?n1=121&n2=110&n3=13
Найти высоту треугольника со сторонами 53, 53 и 36
Найти высоту треугольника со сторонами 101, 98 и 31
Найти высоту треугольника со сторонами 125, 95 и 43
Найти высоту треугольника со сторонами 122, 120 и 22
Найти высоту треугольника со сторонами 111, 111 и 109
Найти высоту треугольника со сторонами 97, 91 и 69
Найти высоту треугольника со сторонами 101, 98 и 31
Найти высоту треугольника со сторонами 125, 95 и 43
Найти высоту треугольника со сторонами 122, 120 и 22
Найти высоту треугольника со сторонами 111, 111 и 109
Найти высоту треугольника со сторонами 97, 91 и 69