Рассчитать высоту треугольника со сторонами 121, 110 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 110 + 33}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-121)(132-110)(132-33)}}{110}\normalsize = 32.3332646}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-121)(132-110)(132-33)}}{121}\normalsize = 29.3938769}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-121)(132-110)(132-33)}}{33}\normalsize = 107.777549}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 110 и 33 равна 32.3332646
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 110 и 33 равна 29.3938769
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 110 и 33 равна 107.777549
Ссылка на результат
?n1=121&n2=110&n3=33
Найти высоту треугольника со сторонами 110, 110 и 20
Найти высоту треугольника со сторонами 141, 129 и 70
Найти высоту треугольника со сторонами 136, 99 и 39
Найти высоту треугольника со сторонами 140, 119 и 113
Найти высоту треугольника со сторонами 134, 111 и 35
Найти высоту треугольника со сторонами 84, 81 и 51
Найти высоту треугольника со сторонами 141, 129 и 70
Найти высоту треугольника со сторонами 136, 99 и 39
Найти высоту треугольника со сторонами 140, 119 и 113
Найти высоту треугольника со сторонами 134, 111 и 35
Найти высоту треугольника со сторонами 84, 81 и 51