Рассчитать высоту треугольника со сторонами 121, 112 и 107

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 112 + 107}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-121)(170-112)(170-107)}}{112}\normalsize = 98.5187165}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-121)(170-112)(170-107)}}{121}\normalsize = 91.1908781}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-121)(170-112)(170-107)}}{107}\normalsize = 103.122395}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 112 и 107 равна 98.5187165
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 112 и 107 равна 91.1908781
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 112 и 107 равна 103.122395
Ссылка на результат
?n1=121&n2=112&n3=107