Рассчитать высоту треугольника со сторонами 121, 112 и 84
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 112 + 84}{2}} \normalsize = 158.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{158.5(158.5-121)(158.5-112)(158.5-84)}}{112}\normalsize = 81.0301892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{158.5(158.5-121)(158.5-112)(158.5-84)}}{121}\normalsize = 75.0031503}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{158.5(158.5-121)(158.5-112)(158.5-84)}}{84}\normalsize = 108.040252}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 112 и 84 равна 81.0301892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 112 и 84 равна 75.0031503
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 112 и 84 равна 108.040252
Ссылка на результат
?n1=121&n2=112&n3=84
Найти высоту треугольника со сторонами 125, 98 и 71
Найти высоту треугольника со сторонами 123, 86 и 39
Найти высоту треугольника со сторонами 67, 61 и 17
Найти высоту треугольника со сторонами 130, 106 и 66
Найти высоту треугольника со сторонами 92, 57 и 41
Найти высоту треугольника со сторонами 145, 119 и 98
Найти высоту треугольника со сторонами 123, 86 и 39
Найти высоту треугольника со сторонами 67, 61 и 17
Найти высоту треугольника со сторонами 130, 106 и 66
Найти высоту треугольника со сторонами 92, 57 и 41
Найти высоту треугольника со сторонами 145, 119 и 98