Рассчитать высоту треугольника со сторонами 121, 115 и 69

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 115 + 69}{2}} \normalsize = 152.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{152.5(152.5-121)(152.5-115)(152.5-69)}}{115}\normalsize = 67.4498869}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{152.5(152.5-121)(152.5-115)(152.5-69)}}{121}\normalsize = 64.1052644}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{152.5(152.5-121)(152.5-115)(152.5-69)}}{69}\normalsize = 112.416478}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 115 и 69 равна 67.4498869
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 115 и 69 равна 64.1052644
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 115 и 69 равна 112.416478
Ссылка на результат
?n1=121&n2=115&n3=69