Рассчитать высоту треугольника со сторонами 121, 116 и 103
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 116 + 103}{2}} \normalsize = 170}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{170(170-121)(170-116)(170-103)}}{116}\normalsize = 94.6517806}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{170(170-121)(170-116)(170-103)}}{121}\normalsize = 90.74055}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{170(170-121)(170-116)(170-103)}}{103}\normalsize = 106.598122}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 116 и 103 равна 94.6517806
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 116 и 103 равна 90.74055
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 116 и 103 равна 106.598122
Ссылка на результат
?n1=121&n2=116&n3=103
Найти высоту треугольника со сторонами 146, 85 и 77
Найти высоту треугольника со сторонами 140, 115 и 62
Найти высоту треугольника со сторонами 91, 87 и 10
Найти высоту треугольника со сторонами 87, 76 и 66
Найти высоту треугольника со сторонами 134, 122 и 118
Найти высоту треугольника со сторонами 117, 101 и 70
Найти высоту треугольника со сторонами 140, 115 и 62
Найти высоту треугольника со сторонами 91, 87 и 10
Найти высоту треугольника со сторонами 87, 76 и 66
Найти высоту треугольника со сторонами 134, 122 и 118
Найти высоту треугольника со сторонами 117, 101 и 70