Рассчитать высоту треугольника со сторонами 121, 116 и 34
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 116 + 34}{2}} \normalsize = 135.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135.5(135.5-121)(135.5-116)(135.5-34)}}{116}\normalsize = 33.9997702}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135.5(135.5-121)(135.5-116)(135.5-34)}}{121}\normalsize = 32.594821}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135.5(135.5-121)(135.5-116)(135.5-34)}}{34}\normalsize = 115.999216}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 116 и 34 равна 33.9997702
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 116 и 34 равна 32.594821
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 116 и 34 равна 115.999216
Ссылка на результат
?n1=121&n2=116&n3=34
Найти высоту треугольника со сторонами 110, 67 и 52
Найти высоту треугольника со сторонами 117, 90 и 87
Найти высоту треугольника со сторонами 89, 64 и 54
Найти высоту треугольника со сторонами 121, 75 и 53
Найти высоту треугольника со сторонами 121, 111 и 103
Найти высоту треугольника со сторонами 122, 101 и 97
Найти высоту треугольника со сторонами 117, 90 и 87
Найти высоту треугольника со сторонами 89, 64 и 54
Найти высоту треугольника со сторонами 121, 75 и 53
Найти высоту треугольника со сторонами 121, 111 и 103
Найти высоту треугольника со сторонами 122, 101 и 97