Рассчитать высоту треугольника со сторонами 121, 117 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 117 + 109}{2}} \normalsize = 173.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{173.5(173.5-121)(173.5-117)(173.5-109)}}{117}\normalsize = 98.4867047}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{173.5(173.5-121)(173.5-117)(173.5-109)}}{121}\normalsize = 95.2309459}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{173.5(173.5-121)(173.5-117)(173.5-109)}}{109}\normalsize = 105.715087}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 117 и 109 равна 98.4867047
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 117 и 109 равна 95.2309459
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 117 и 109 равна 105.715087
Ссылка на результат
?n1=121&n2=117&n3=109
Найти высоту треугольника со сторонами 132, 113 и 28
Найти высоту треугольника со сторонами 130, 103 и 101
Найти высоту треугольника со сторонами 141, 115 и 89
Найти высоту треугольника со сторонами 81, 70 и 50
Найти высоту треугольника со сторонами 73, 61 и 42
Найти высоту треугольника со сторонами 109, 82 и 47
Найти высоту треугольника со сторонами 130, 103 и 101
Найти высоту треугольника со сторонами 141, 115 и 89
Найти высоту треугольника со сторонами 81, 70 и 50
Найти высоту треугольника со сторонами 73, 61 и 42
Найти высоту треугольника со сторонами 109, 82 и 47