Рассчитать высоту треугольника со сторонами 121, 117 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 117 + 12}{2}} \normalsize = 125}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125(125-121)(125-117)(125-12)}}{117}\normalsize = 11.4924693}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125(125-121)(125-117)(125-12)}}{121}\normalsize = 11.1125529}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125(125-121)(125-117)(125-12)}}{12}\normalsize = 112.051575}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 117 и 12 равна 11.4924693
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 117 и 12 равна 11.1125529
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 117 и 12 равна 112.051575
Ссылка на результат
?n1=121&n2=117&n3=12
Найти высоту треугольника со сторонами 71, 41 и 38
Найти высоту треугольника со сторонами 137, 103 и 36
Найти высоту треугольника со сторонами 139, 120 и 116
Найти высоту треугольника со сторонами 114, 89 и 77
Найти высоту треугольника со сторонами 124, 122 и 77
Найти высоту треугольника со сторонами 149, 121 и 92
Найти высоту треугольника со сторонами 137, 103 и 36
Найти высоту треугольника со сторонами 139, 120 и 116
Найти высоту треугольника со сторонами 114, 89 и 77
Найти высоту треугольника со сторонами 124, 122 и 77
Найти высоту треугольника со сторонами 149, 121 и 92