Рассчитать высоту треугольника со сторонами 121, 117 и 20
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 117 + 20}{2}} \normalsize = 129}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{129(129-121)(129-117)(129-20)}}{117}\normalsize = 19.8603938}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{129(129-121)(129-117)(129-20)}}{121}\normalsize = 19.2038518}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{129(129-121)(129-117)(129-20)}}{20}\normalsize = 116.183303}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 117 и 20 равна 19.8603938
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 117 и 20 равна 19.2038518
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 117 и 20 равна 116.183303
Ссылка на результат
?n1=121&n2=117&n3=20
Найти высоту треугольника со сторонами 78, 64 и 57
Найти высоту треугольника со сторонами 54, 46 и 22
Найти высоту треугольника со сторонами 99, 97 и 36
Найти высоту треугольника со сторонами 83, 82 и 22
Найти высоту треугольника со сторонами 137, 90 и 77
Найти высоту треугольника со сторонами 147, 130 и 129
Найти высоту треугольника со сторонами 54, 46 и 22
Найти высоту треугольника со сторонами 99, 97 и 36
Найти высоту треугольника со сторонами 83, 82 и 22
Найти высоту треугольника со сторонами 137, 90 и 77
Найти высоту треугольника со сторонами 147, 130 и 129