Рассчитать высоту треугольника со сторонами 121, 117 и 59
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 117 + 59}{2}} \normalsize = 148.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{148.5(148.5-121)(148.5-117)(148.5-59)}}{117}\normalsize = 58.0016706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{148.5(148.5-121)(148.5-117)(148.5-59)}}{121}\normalsize = 56.08426}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{148.5(148.5-121)(148.5-117)(148.5-59)}}{59}\normalsize = 115.020262}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 117 и 59 равна 58.0016706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 117 и 59 равна 56.08426
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 117 и 59 равна 115.020262
Ссылка на результат
?n1=121&n2=117&n3=59
Найти высоту треугольника со сторонами 136, 123 и 108
Найти высоту треугольника со сторонами 139, 113 и 89
Найти высоту треугольника со сторонами 131, 93 и 60
Найти высоту треугольника со сторонами 130, 86 и 69
Найти высоту треугольника со сторонами 137, 128 и 60
Найти высоту треугольника со сторонами 100, 92 и 11
Найти высоту треугольника со сторонами 139, 113 и 89
Найти высоту треугольника со сторонами 131, 93 и 60
Найти высоту треугольника со сторонами 130, 86 и 69
Найти высоту треугольника со сторонами 137, 128 и 60
Найти высоту треугольника со сторонами 100, 92 и 11