Рассчитать высоту треугольника со сторонами 121, 119 и 8
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 119 + 8}{2}} \normalsize = 124}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{124(124-121)(124-119)(124-8)}}{119}\normalsize = 7.80671817}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{124(124-121)(124-119)(124-8)}}{121}\normalsize = 7.6776815}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{124(124-121)(124-119)(124-8)}}{8}\normalsize = 116.124933}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 119 и 8 равна 7.80671817
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 119 и 8 равна 7.6776815
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 119 и 8 равна 116.124933
Ссылка на результат
?n1=121&n2=119&n3=8
Найти высоту треугольника со сторонами 79, 44 и 44
Найти высоту треугольника со сторонами 50, 45 и 6
Найти высоту треугольника со сторонами 122, 102 и 48
Найти высоту треугольника со сторонами 110, 78 и 62
Найти высоту треугольника со сторонами 120, 117 и 34
Найти высоту треугольника со сторонами 74, 65 и 21
Найти высоту треугольника со сторонами 50, 45 и 6
Найти высоту треугольника со сторонами 122, 102 и 48
Найти высоту треугольника со сторонами 110, 78 и 62
Найти высоту треугольника со сторонами 120, 117 и 34
Найти высоту треугольника со сторонами 74, 65 и 21