Рассчитать высоту треугольника со сторонами 121, 73 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 73 + 67}{2}} \normalsize = 130.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{130.5(130.5-121)(130.5-73)(130.5-67)}}{73}\normalsize = 58.290124}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{130.5(130.5-121)(130.5-73)(130.5-67)}}{121}\normalsize = 35.166769}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{130.5(130.5-121)(130.5-73)(130.5-67)}}{67}\normalsize = 63.5101351}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 73 и 67 равна 58.290124
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 73 и 67 равна 35.166769
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 73 и 67 равна 63.5101351
Ссылка на результат
?n1=121&n2=73&n3=67
Найти высоту треугольника со сторонами 150, 113 и 65
Найти высоту треугольника со сторонами 146, 88 и 86
Найти высоту треугольника со сторонами 129, 101 и 49
Найти высоту треугольника со сторонами 31, 25 и 18
Найти высоту треугольника со сторонами 141, 123 и 34
Найти высоту треугольника со сторонами 148, 148 и 59
Найти высоту треугольника со сторонами 146, 88 и 86
Найти высоту треугольника со сторонами 129, 101 и 49
Найти высоту треугольника со сторонами 31, 25 и 18
Найти высоту треугольника со сторонами 141, 123 и 34
Найти высоту треугольника со сторонами 148, 148 и 59