Рассчитать высоту треугольника со сторонами 121, 75 и 61
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 75 + 61}{2}} \normalsize = 128.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-75)(128.5-61)}}{75}\normalsize = 49.7484673}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-75)(128.5-61)}}{121}\normalsize = 30.8358268}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{128.5(128.5-121)(128.5-75)(128.5-61)}}{61}\normalsize = 61.1661483}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 75 и 61 равна 49.7484673
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 75 и 61 равна 30.8358268
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 75 и 61 равна 61.1661483
Ссылка на результат
?n1=121&n2=75&n3=61
Найти высоту треугольника со сторонами 144, 139 и 119
Найти высоту треугольника со сторонами 83, 72 и 46
Найти высоту треугольника со сторонами 63, 46 и 30
Найти высоту треугольника со сторонами 82, 74 и 73
Найти высоту треугольника со сторонами 86, 82 и 62
Найти высоту треугольника со сторонами 64, 59 и 24
Найти высоту треугольника со сторонами 83, 72 и 46
Найти высоту треугольника со сторонами 63, 46 и 30
Найти высоту треугольника со сторонами 82, 74 и 73
Найти высоту треугольника со сторонами 86, 82 и 62
Найти высоту треугольника со сторонами 64, 59 и 24