Рассчитать высоту треугольника со сторонами 121, 82 и 64
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 82 + 64}{2}} \normalsize = 133.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133.5(133.5-121)(133.5-82)(133.5-64)}}{82}\normalsize = 59.6084459}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133.5(133.5-121)(133.5-82)(133.5-64)}}{121}\normalsize = 40.3958063}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133.5(133.5-121)(133.5-82)(133.5-64)}}{64}\normalsize = 76.3733214}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 82 и 64 равна 59.6084459
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 82 и 64 равна 40.3958063
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 82 и 64 равна 76.3733214
Ссылка на результат
?n1=121&n2=82&n3=64
Найти высоту треугольника со сторонами 135, 129 и 37
Найти высоту треугольника со сторонами 148, 146 и 14
Найти высоту треугольника со сторонами 148, 128 и 90
Найти высоту треугольника со сторонами 149, 124 и 103
Найти высоту треугольника со сторонами 79, 45 и 41
Найти высоту треугольника со сторонами 96, 89 и 61
Найти высоту треугольника со сторонами 148, 146 и 14
Найти высоту треугольника со сторонами 148, 128 и 90
Найти высоту треугольника со сторонами 149, 124 и 103
Найти высоту треугольника со сторонами 79, 45 и 41
Найти высоту треугольника со сторонами 96, 89 и 61