Рассчитать высоту треугольника со сторонами 121, 88 и 42
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 88 + 42}{2}} \normalsize = 125.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{125.5(125.5-121)(125.5-88)(125.5-42)}}{88}\normalsize = 30.2227734}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{125.5(125.5-121)(125.5-88)(125.5-42)}}{121}\normalsize = 21.9801988}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{125.5(125.5-121)(125.5-88)(125.5-42)}}{42}\normalsize = 63.3239062}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 88 и 42 равна 30.2227734
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 88 и 42 равна 21.9801988
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 88 и 42 равна 63.3239062
Ссылка на результат
?n1=121&n2=88&n3=42
Найти высоту треугольника со сторонами 132, 124 и 52
Найти высоту треугольника со сторонами 91, 88 и 49
Найти высоту треугольника со сторонами 101, 85 и 52
Найти высоту треугольника со сторонами 124, 122 и 111
Найти высоту треугольника со сторонами 134, 86 и 55
Найти высоту треугольника со сторонами 140, 112 и 64
Найти высоту треугольника со сторонами 91, 88 и 49
Найти высоту треугольника со сторонами 101, 85 и 52
Найти высоту треугольника со сторонами 124, 122 и 111
Найти высоту треугольника со сторонами 134, 86 и 55
Найти высоту треугольника со сторонами 140, 112 и 64