Рассчитать высоту треугольника со сторонами 121, 88 и 59

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 88 + 59}{2}} \normalsize = 134}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134(134-121)(134-88)(134-59)}}{88}\normalsize = 55.7161304}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134(134-121)(134-88)(134-59)}}{121}\normalsize = 40.5208221}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134(134-121)(134-88)(134-59)}}{59}\normalsize = 83.102025}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 88 и 59 равна 55.7161304
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 88 и 59 равна 40.5208221
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 88 и 59 равна 83.102025
Ссылка на результат
?n1=121&n2=88&n3=59