Рассчитать высоту треугольника со сторонами 121, 88 и 67
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 88 + 67}{2}} \normalsize = 138}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{138(138-121)(138-88)(138-67)}}{88}\normalsize = 65.5881685}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{138(138-121)(138-88)(138-67)}}{121}\normalsize = 47.7004862}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{138(138-121)(138-88)(138-67)}}{67}\normalsize = 86.1456542}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 88 и 67 равна 65.5881685
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 88 и 67 равна 47.7004862
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 88 и 67 равна 86.1456542
Ссылка на результат
?n1=121&n2=88&n3=67
Найти высоту треугольника со сторонами 114, 65 и 65
Найти высоту треугольника со сторонами 134, 122 и 82
Найти высоту треугольника со сторонами 148, 148 и 119
Найти высоту треугольника со сторонами 74, 63 и 21
Найти высоту треугольника со сторонами 115, 113 и 19
Найти высоту треугольника со сторонами 132, 128 и 117
Найти высоту треугольника со сторонами 134, 122 и 82
Найти высоту треугольника со сторонами 148, 148 и 119
Найти высоту треугольника со сторонами 74, 63 и 21
Найти высоту треугольника со сторонами 115, 113 и 19
Найти высоту треугольника со сторонами 132, 128 и 117