Рассчитать высоту треугольника со сторонами 121, 90 и 43
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 90 + 43}{2}} \normalsize = 127}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{127(127-121)(127-90)(127-43)}}{90}\normalsize = 34.1983755}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{127(127-121)(127-90)(127-43)}}{121}\normalsize = 25.4368082}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{127(127-121)(127-90)(127-43)}}{43}\normalsize = 71.5779953}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 90 и 43 равна 34.1983755
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 90 и 43 равна 25.4368082
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 90 и 43 равна 71.5779953
Ссылка на результат
?n1=121&n2=90&n3=43
Найти высоту треугольника со сторонами 110, 110 и 11
Найти высоту треугольника со сторонами 138, 83 и 58
Найти высоту треугольника со сторонами 140, 111 и 103
Найти высоту треугольника со сторонами 138, 132 и 77
Найти высоту треугольника со сторонами 76, 63 и 35
Найти высоту треугольника со сторонами 146, 126 и 55
Найти высоту треугольника со сторонами 138, 83 и 58
Найти высоту треугольника со сторонами 140, 111 и 103
Найти высоту треугольника со сторонами 138, 132 и 77
Найти высоту треугольника со сторонами 76, 63 и 35
Найти высоту треугольника со сторонами 146, 126 и 55