Рассчитать высоту треугольника со сторонами 121, 90 и 74

Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Высота треугольника по сторонам
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 90 + 74}{2}} \normalsize = 142.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{142.5(142.5-121)(142.5-90)(142.5-74)}}{90}\normalsize = 73.7630874}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{142.5(142.5-121)(142.5-90)(142.5-74)}}{121}\normalsize = 54.8651063}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{142.5(142.5-121)(142.5-90)(142.5-74)}}{74}\normalsize = 89.711863}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 90 и 74 равна 73.7630874
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 90 и 74 равна 54.8651063
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 90 и 74 равна 89.711863
Ссылка на результат
?n1=121&n2=90&n3=74