Рассчитать высоту треугольника со сторонами 121, 92 и 57
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 92 + 57}{2}} \normalsize = 135}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{135(135-121)(135-92)(135-57)}}{92}\normalsize = 54.7336738}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{135(135-121)(135-92)(135-57)}}{121}\normalsize = 41.6156859}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{135(135-121)(135-92)(135-57)}}{57}\normalsize = 88.34207}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 92 и 57 равна 54.7336738
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 92 и 57 равна 41.6156859
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 92 и 57 равна 88.34207
Ссылка на результат
?n1=121&n2=92&n3=57
Найти высоту треугольника со сторонами 112, 93 и 68
Найти высоту треугольника со сторонами 107, 94 и 30
Найти высоту треугольника со сторонами 44, 41 и 9
Найти высоту треугольника со сторонами 137, 132 и 114
Найти высоту треугольника со сторонами 107, 96 и 55
Найти высоту треугольника со сторонами 129, 112 и 75
Найти высоту треугольника со сторонами 107, 94 и 30
Найти высоту треугольника со сторонами 44, 41 и 9
Найти высоту треугольника со сторонами 137, 132 и 114
Найти высоту треугольника со сторонами 107, 96 и 55
Найти высоту треугольника со сторонами 129, 112 и 75