Рассчитать высоту треугольника со сторонами 121, 95 и 83
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 95 + 83}{2}} \normalsize = 149.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{149.5(149.5-121)(149.5-95)(149.5-83)}}{95}\normalsize = 82.7291363}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{149.5(149.5-121)(149.5-95)(149.5-83)}}{121}\normalsize = 64.9526277}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{149.5(149.5-121)(149.5-95)(149.5-83)}}{83}\normalsize = 94.6899753}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 95 и 83 равна 82.7291363
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 95 и 83 равна 64.9526277
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 95 и 83 равна 94.6899753
Ссылка на результат
?n1=121&n2=95&n3=83
Найти высоту треугольника со сторонами 107, 107 и 7
Найти высоту треугольника со сторонами 105, 74 и 44
Найти высоту треугольника со сторонами 149, 119 и 39
Найти высоту треугольника со сторонами 128, 103 и 58
Найти высоту треугольника со сторонами 150, 101 и 89
Найти высоту треугольника со сторонами 130, 126 и 96
Найти высоту треугольника со сторонами 105, 74 и 44
Найти высоту треугольника со сторонами 149, 119 и 39
Найти высоту треугольника со сторонами 128, 103 и 58
Найти высоту треугольника со сторонами 150, 101 и 89
Найти высоту треугольника со сторонами 130, 126 и 96