Рассчитать высоту треугольника со сторонами 121, 95 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 95 + 92}{2}} \normalsize = 154}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154(154-121)(154-95)(154-92)}}{95}\normalsize = 90.7706763}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154(154-121)(154-95)(154-92)}}{121}\normalsize = 71.2662335}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154(154-121)(154-95)(154-92)}}{92}\normalsize = 93.7305897}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 95 и 92 равна 90.7706763
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 95 и 92 равна 71.2662335
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 95 и 92 равна 93.7305897
Ссылка на результат
?n1=121&n2=95&n3=92
Найти высоту треугольника со сторонами 135, 112 и 82
Найти высоту треугольника со сторонами 57, 43 и 24
Найти высоту треугольника со сторонами 141, 81 и 74
Найти высоту треугольника со сторонами 129, 107 и 54
Найти высоту треугольника со сторонами 59, 44 и 22
Найти высоту треугольника со сторонами 147, 121 и 114
Найти высоту треугольника со сторонами 57, 43 и 24
Найти высоту треугольника со сторонами 141, 81 и 74
Найти высоту треугольника со сторонами 129, 107 и 54
Найти высоту треугольника со сторонами 59, 44 и 22
Найти высоту треугольника со сторонами 147, 121 и 114