Рассчитать высоту треугольника со сторонами 121, 98 и 88
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 98 + 88}{2}} \normalsize = 153.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153.5(153.5-121)(153.5-98)(153.5-88)}}{98}\normalsize = 86.9094361}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153.5(153.5-121)(153.5-98)(153.5-88)}}{121}\normalsize = 70.3894606}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153.5(153.5-121)(153.5-98)(153.5-88)}}{88}\normalsize = 96.7855084}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 98 и 88 равна 86.9094361
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 98 и 88 равна 70.3894606
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 98 и 88 равна 96.7855084
Ссылка на результат
?n1=121&n2=98&n3=88
Найти высоту треугольника со сторонами 140, 137 и 92
Найти высоту треугольника со сторонами 133, 111 и 79
Найти высоту треугольника со сторонами 140, 107 и 88
Найти высоту треугольника со сторонами 91, 80 и 17
Найти высоту треугольника со сторонами 132, 98 и 55
Найти высоту треугольника со сторонами 105, 104 и 52
Найти высоту треугольника со сторонами 133, 111 и 79
Найти высоту треугольника со сторонами 140, 107 и 88
Найти высоту треугольника со сторонами 91, 80 и 17
Найти высоту треугольника со сторонами 132, 98 и 55
Найти высоту треугольника со сторонами 105, 104 и 52