Рассчитать высоту треугольника со сторонами 121, 99 и 49
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{121 + 99 + 49}{2}} \normalsize = 134.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{134.5(134.5-121)(134.5-99)(134.5-49)}}{99}\normalsize = 47.4263892}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{134.5(134.5-121)(134.5-99)(134.5-49)}}{121}\normalsize = 38.8034094}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{134.5(134.5-121)(134.5-99)(134.5-49)}}{49}\normalsize = 95.820664}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 121, 99 и 49 равна 47.4263892
Высота треугольника опущенная с вершины A на сторону BC со сторонами 121, 99 и 49 равна 38.8034094
Высота треугольника опущенная с вершины C на сторону AB со сторонами 121, 99 и 49 равна 95.820664
Ссылка на результат
?n1=121&n2=99&n3=49
Найти высоту треугольника со сторонами 82, 78 и 32
Найти высоту треугольника со сторонами 80, 73 и 27
Найти высоту треугольника со сторонами 142, 108 и 92
Найти высоту треугольника со сторонами 93, 91 и 89
Найти высоту треугольника со сторонами 149, 93 и 88
Найти высоту треугольника со сторонами 107, 100 и 10
Найти высоту треугольника со сторонами 80, 73 и 27
Найти высоту треугольника со сторонами 142, 108 и 92
Найти высоту треугольника со сторонами 93, 91 и 89
Найти высоту треугольника со сторонами 149, 93 и 88
Найти высоту треугольника со сторонами 107, 100 и 10