Рассчитать высоту треугольника со сторонами 122, 104 и 80
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 104 + 80}{2}} \normalsize = 153}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{153(153-122)(153-104)(153-80)}}{104}\normalsize = 79.210488}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{153(153-122)(153-104)(153-80)}}{122}\normalsize = 67.5236947}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{153(153-122)(153-104)(153-80)}}{80}\normalsize = 102.973634}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 104 и 80 равна 79.210488
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 104 и 80 равна 67.5236947
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 104 и 80 равна 102.973634
Ссылка на результат
?n1=122&n2=104&n3=80
Найти высоту треугольника со сторонами 141, 118 и 89
Найти высоту треугольника со сторонами 126, 109 и 41
Найти высоту треугольника со сторонами 126, 104 и 28
Найти высоту треугольника со сторонами 145, 117 и 40
Найти высоту треугольника со сторонами 114, 94 и 35
Найти высоту треугольника со сторонами 130, 74 и 58
Найти высоту треугольника со сторонами 126, 109 и 41
Найти высоту треугольника со сторонами 126, 104 и 28
Найти высоту треугольника со сторонами 145, 117 и 40
Найти высоту треугольника со сторонами 114, 94 и 35
Найти высоту треугольника со сторонами 130, 74 и 58