Рассчитать высоту треугольника со сторонами 122, 106 и 87
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 106 + 87}{2}} \normalsize = 157.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{157.5(157.5-122)(157.5-106)(157.5-87)}}{106}\normalsize = 85.0113199}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{157.5(157.5-122)(157.5-106)(157.5-87)}}{122}\normalsize = 73.8622943}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{157.5(157.5-122)(157.5-106)(157.5-87)}}{87}\normalsize = 103.57701}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 106 и 87 равна 85.0113199
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 106 и 87 равна 73.8622943
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 106 и 87 равна 103.57701
Ссылка на результат
?n1=122&n2=106&n3=87
Найти высоту треугольника со сторонами 124, 72 и 61
Найти высоту треугольника со сторонами 138, 101 и 44
Найти высоту треугольника со сторонами 115, 95 и 42
Найти высоту треугольника со сторонами 144, 139 и 60
Найти высоту треугольника со сторонами 113, 74 и 48
Найти высоту треугольника со сторонами 67, 57 и 34
Найти высоту треугольника со сторонами 138, 101 и 44
Найти высоту треугольника со сторонами 115, 95 и 42
Найти высоту треугольника со сторонами 144, 139 и 60
Найти высоту треугольника со сторонами 113, 74 и 48
Найти высоту треугольника со сторонами 67, 57 и 34