Рассчитать высоту треугольника со сторонами 122, 109 и 33
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c

Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 109 + 33}{2}} \normalsize = 132}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{132(132-122)(132-109)(132-33)}}{109}\normalsize = 31.8106086}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{132(132-122)(132-109)(132-33)}}{122}\normalsize = 28.4209536}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{132(132-122)(132-109)(132-33)}}{33}\normalsize = 105.071404}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 109 и 33 равна 31.8106086
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 109 и 33 равна 28.4209536
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 109 и 33 равна 105.071404
Ссылка на результат
?n1=122&n2=109&n3=33
Найти высоту треугольника со сторонами 114, 82 и 62
Найти высоту треугольника со сторонами 132, 103 и 77
Найти высоту треугольника со сторонами 92, 52 и 46
Найти высоту треугольника со сторонами 127, 111 и 25
Найти высоту треугольника со сторонами 131, 113 и 74
Найти высоту треугольника со сторонами 87, 71 и 19
Найти высоту треугольника со сторонами 132, 103 и 77
Найти высоту треугольника со сторонами 92, 52 и 46
Найти высоту треугольника со сторонами 127, 111 и 25
Найти высоту треугольника со сторонами 131, 113 и 74
Найти высоту треугольника со сторонами 87, 71 и 19