Рассчитать высоту треугольника со сторонами 122, 110 и 77
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 110 + 77}{2}} \normalsize = 154.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{154.5(154.5-122)(154.5-110)(154.5-77)}}{110}\normalsize = 75.6613506}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{154.5(154.5-122)(154.5-110)(154.5-77)}}{122}\normalsize = 68.2192506}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{154.5(154.5-122)(154.5-110)(154.5-77)}}{77}\normalsize = 108.087644}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 110 и 77 равна 75.6613506
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 110 и 77 равна 68.2192506
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 110 и 77 равна 108.087644
Ссылка на результат
?n1=122&n2=110&n3=77
Найти высоту треугольника со сторонами 104, 60 и 57
Найти высоту треугольника со сторонами 118, 112 и 32
Найти высоту треугольника со сторонами 64, 53 и 49
Найти высоту треугольника со сторонами 146, 133 и 73
Найти высоту треугольника со сторонами 40, 32 и 32
Найти высоту треугольника со сторонами 147, 137 и 111
Найти высоту треугольника со сторонами 118, 112 и 32
Найти высоту треугольника со сторонами 64, 53 и 49
Найти высоту треугольника со сторонами 146, 133 и 73
Найти высоту треугольника со сторонами 40, 32 и 32
Найти высоту треугольника со сторонами 147, 137 и 111