Рассчитать высоту треугольника со сторонами 122, 111 и 12
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 111 + 12}{2}} \normalsize = 122.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{122.5(122.5-122)(122.5-111)(122.5-12)}}{111}\normalsize = 5.02678283}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{122.5(122.5-122)(122.5-111)(122.5-12)}}{122}\normalsize = 4.57354831}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{122.5(122.5-122)(122.5-111)(122.5-12)}}{12}\normalsize = 46.4977411}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 111 и 12 равна 5.02678283
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 111 и 12 равна 4.57354831
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 111 и 12 равна 46.4977411
Ссылка на результат
?n1=122&n2=111&n3=12
Найти высоту треугольника со сторонами 115, 95 и 86
Найти высоту треугольника со сторонами 110, 109 и 81
Найти высоту треугольника со сторонами 117, 107 и 18
Найти высоту треугольника со сторонами 126, 124 и 23
Найти высоту треугольника со сторонами 74, 72 и 58
Найти высоту треугольника со сторонами 142, 123 и 47
Найти высоту треугольника со сторонами 110, 109 и 81
Найти высоту треугольника со сторонами 117, 107 и 18
Найти высоту треугольника со сторонами 126, 124 и 23
Найти высоту треугольника со сторонами 74, 72 и 58
Найти высоту треугольника со сторонами 142, 123 и 47