Рассчитать высоту треугольника со сторонами 122, 112 и 32
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 112 + 32}{2}} \normalsize = 133}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{133(133-122)(133-112)(133-32)}}{112}\normalsize = 31.4560706}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{133(133-122)(133-112)(133-32)}}{122}\normalsize = 28.8777041}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{133(133-122)(133-112)(133-32)}}{32}\normalsize = 110.096247}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 112 и 32 равна 31.4560706
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 112 и 32 равна 28.8777041
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 112 и 32 равна 110.096247
Ссылка на результат
?n1=122&n2=112&n3=32
Найти высоту треугольника со сторонами 125, 98 и 78
Найти высоту треугольника со сторонами 146, 80 и 71
Найти высоту треугольника со сторонами 103, 84 и 36
Найти высоту треугольника со сторонами 121, 81 и 65
Найти высоту треугольника со сторонами 137, 136 и 53
Найти высоту треугольника со сторонами 88, 77 и 33
Найти высоту треугольника со сторонами 146, 80 и 71
Найти высоту треугольника со сторонами 103, 84 и 36
Найти высоту треугольника со сторонами 121, 81 и 65
Найти высоту треугольника со сторонами 137, 136 и 53
Найти высоту треугольника со сторонами 88, 77 и 33