Рассчитать высоту треугольника со сторонами 122, 113 и 56
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 113 + 56}{2}} \normalsize = 145.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{145.5(145.5-122)(145.5-113)(145.5-56)}}{113}\normalsize = 55.8174739}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{145.5(145.5-122)(145.5-113)(145.5-56)}}{122}\normalsize = 51.6997914}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{145.5(145.5-122)(145.5-113)(145.5-56)}}{56}\normalsize = 112.631688}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 113 и 56 равна 55.8174739
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 113 и 56 равна 51.6997914
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 113 и 56 равна 112.631688
Ссылка на результат
?n1=122&n2=113&n3=56
Найти высоту треугольника со сторонами 147, 130 и 79
Найти высоту треугольника со сторонами 85, 62 и 45
Найти высоту треугольника со сторонами 16, 10 и 9
Найти высоту треугольника со сторонами 57, 54 и 11
Найти высоту треугольника со сторонами 110, 67 и 50
Найти высоту треугольника со сторонами 105, 101 и 75
Найти высоту треугольника со сторонами 85, 62 и 45
Найти высоту треугольника со сторонами 16, 10 и 9
Найти высоту треугольника со сторонами 57, 54 и 11
Найти высоту треугольника со сторонами 110, 67 и 50
Найти высоту треугольника со сторонами 105, 101 и 75