Рассчитать высоту треугольника со сторонами 122, 114 и 109
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 114 + 109}{2}} \normalsize = 172.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{172.5(172.5-122)(172.5-114)(172.5-109)}}{114}\normalsize = 99.7999167}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{172.5(172.5-122)(172.5-114)(172.5-109)}}{122}\normalsize = 93.2556599}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{172.5(172.5-122)(172.5-114)(172.5-109)}}{109}\normalsize = 104.377895}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 114 и 109 равна 99.7999167
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 114 и 109 равна 93.2556599
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 114 и 109 равна 104.377895
Ссылка на результат
?n1=122&n2=114&n3=109
Найти высоту треугольника со сторонами 98, 79 и 23
Найти высоту треугольника со сторонами 105, 102 и 77
Найти высоту треугольника со сторонами 147, 117 и 115
Найти высоту треугольника со сторонами 89, 49 и 48
Найти высоту треугольника со сторонами 118, 118 и 5
Найти высоту треугольника со сторонами 145, 114 и 97
Найти высоту треугольника со сторонами 105, 102 и 77
Найти высоту треугольника со сторонами 147, 117 и 115
Найти высоту треугольника со сторонами 89, 49 и 48
Найти высоту треугольника со сторонами 118, 118 и 5
Найти высоту треугольника со сторонами 145, 114 и 97