Рассчитать высоту треугольника со сторонами 122, 117 и 92
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
![Высота треугольника по сторонам](/images/119.png)
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 117 + 92}{2}} \normalsize = 165.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{165.5(165.5-122)(165.5-117)(165.5-92)}}{117}\normalsize = 86.596891}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{165.5(165.5-122)(165.5-117)(165.5-92)}}{122}\normalsize = 83.0478381}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{165.5(165.5-122)(165.5-117)(165.5-92)}}{92}\normalsize = 110.128655}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 117 и 92 равна 86.596891
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 117 и 92 равна 83.0478381
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 117 и 92 равна 110.128655
Ссылка на результат
?n1=122&n2=117&n3=92
Найти высоту треугольника со сторонами 73, 57 и 50
Найти высоту треугольника со сторонами 81, 68 и 16
Найти высоту треугольника со сторонами 145, 138 и 110
Найти высоту треугольника со сторонами 142, 106 и 41
Найти высоту треугольника со сторонами 66, 55 и 21
Найти высоту треугольника со сторонами 108, 103 и 37
Найти высоту треугольника со сторонами 81, 68 и 16
Найти высоту треугольника со сторонами 145, 138 и 110
Найти высоту треугольника со сторонами 142, 106 и 41
Найти высоту треугольника со сторонами 66, 55 и 21
Найти высоту треугольника со сторонами 108, 103 и 37