Рассчитать высоту треугольника со сторонами 122, 119 и 112
Значащих цифр:
Введите длину стороны a
Введите длину стороны b
Введите длину стороны c
Формулу высоты треугольника выведем из формулы Герона
\color{#0000FF}{p = \Large{\frac{a + b + c}{2}}}
\color{#0000FF}{S = \sqrt{p(p-a)(p-b)(p-c)}}
Где a, b, c - длины сторон треугольника, p - полупериметр
и формулы площади треугольника
\color{#0000FF}{S = \Large\frac{1}{2}\normalsize*b*h_b}
Выведем высоту треугольника
\color{#0000FF}{\Large\frac{1}{2}\normalsize*b*h_b = \sqrt{p(p-a)(p-b)(p-c)}}
Формулы высот треугольника
\color{#0000FF}{h_b = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{b}}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{a}}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{p(p-a)(p-b)(p-c)}}{c}}
Решение
\color{#0000FF}{p = \Large{\frac{122 + 119 + 112}{2}} \normalsize = 176.5}
\color{#0000FF}{h_b = \Large\frac{2\sqrt{176.5(176.5-122)(176.5-119)(176.5-112)}}{119}\normalsize = 100.384676}
\color{#0000FF}{h_a = \Large\frac{2\sqrt{176.5(176.5-122)(176.5-119)(176.5-112)}}{122}\normalsize = 97.9162}
\color{#0000FF}{h_c = \Large\frac{2\sqrt{176.5(176.5-122)(176.5-119)(176.5-112)}}{112}\normalsize = 106.658718}
Высота треугольника опущенная с вершины B на сторону AC со сторонами 122, 119 и 112 равна 100.384676
Высота треугольника опущенная с вершины A на сторону BC со сторонами 122, 119 и 112 равна 97.9162
Высота треугольника опущенная с вершины C на сторону AB со сторонами 122, 119 и 112 равна 106.658718
Ссылка на результат
?n1=122&n2=119&n3=112
Найти высоту треугольника со сторонами 137, 125 и 28
Найти высоту треугольника со сторонами 49, 43 и 41
Найти высоту треугольника со сторонами 141, 126 и 76
Найти высоту треугольника со сторонами 126, 124 и 44
Найти высоту треугольника со сторонами 113, 109 и 21
Найти высоту треугольника со сторонами 47, 44 и 24
Найти высоту треугольника со сторонами 49, 43 и 41
Найти высоту треугольника со сторонами 141, 126 и 76
Найти высоту треугольника со сторонами 126, 124 и 44
Найти высоту треугольника со сторонами 113, 109 и 21
Найти высоту треугольника со сторонами 47, 44 и 24